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Abstract. The paper provides a Bayesian methodological framework for the estimation of structural 

vector autoregression (SVAR) models with recursive identification schemes that allows for the 

inclusion of overidentifying restrictions. The proposed framework enables the researcher (i) to elicit 

the prior on non-zero contemporaneous relations between economic variables and (ii) to derive an 

analytical expression for the posterior distribution and marginal data density. We illustrate our 

methodological framework by estimating a New-Keynesian SVAR model for Poland. 
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1. Introduction 

 

Structural vector autoregression (SVAR) models remain a standard tool used for analysing 

the dynamic propagation of economic shocks. Despite the extensive debate on the 

‘appropriate’ structuralisation of vector autoregression (VAR) models held in the 1980s and 

1990s, recursive identification schemes continue to be widely used both in the academic 

literature and policy analysis, particularly to investigate the effects of monetary shocks (e.g. 

Christiano et al., 1999, 2005; Uhlig, 2005).1 This paper contributes to the literature by 

proposing an analytically tractable prior setup for recursive VARs with potentially 
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overidentifying restrictions that is well-suited to get guidance from the economic theory. We 

illustrate how these methodological advances can be applied to estimate an SVAR model 

with the prior centred on the three-equation New-Keynesian model. 

The most general approach to dealing with Bayesian SVAR models is arguably that of 

Waggoner and Zha (2003, WZ). Their algorithm for drawing from the posterior is very 

efficient under any identifying scheme. In particular, it allows for exact sampling under the 

triangular identifying scheme. A potential question then arises whether any new special 

treatment of recursive SVAR models (with overidentifying restrictions) is needed. The 

answer is yes for two reasons. Firstly, the efficiency of the algorithm in WZ comes at the cost 

of transparency. Secondly, as stated by WZ (see Waggoner & Zha, 2003, footnote 6), it is not 

well-suited to incorporate prior beliefs about the coefficients of a model. The reason of the 

above is that WZ normalise the variances of the disturbances in the SVAR model, which 

means that the coefficients lose their intuitive interpretation. 

The alternative to WZ, designed to incorporate prior beliefs about the structural 

coefficients of a model, was proposed by Baumeister and Hamilton (2015, BH). This method 

describes the contemporaneous relations among endogenous variables and was applied to 

model the dynamics of the oil (Baumeister & Hamilton, 2019) or natural gas market 

(Rubaszek et al., 2021). The BH approach is very flexible although it comes at the expense 

of switching from exact sampling to the use of Markov Chain Monte Carlo (MCMC) 

techniques. 

In this paper, we propose a prior for the SVAR model that normalises the coefficients of 

the contemporaneous relations and at the same time allows for exact sampling. As a 

consequence, we can directly specify the prior on contemporaneous relations, so that 

inference becomes more intuitive compared to WZ and the setup well-suited to use theoretic 

economic models as in BH. The advantage of our prior compared to BH is that it shares some 

convenient features with the standard Normal-Wishart prior (Kadiyala & Karlsson, 1997; 

Sims & Zha, 1998) such as exact sampling from the posterior and an analytical form of the 

marginal data density (MDD) in the case of overidentified recursive models. The former 

characteristic can be useful in the context of the growing literature on large Bayesian VARs 

(Bańbura et al., 2010; Crump et al., 2025), which could be broadened to large Bayesian 

SVARs, whereas the latter considerably facilitates setting up a hierarchical prior, similarly to 



what was done for example in Giannone et al. (2015). The second advantage of our prior is 

that it allows the researcher to distinguish between the lags of the same and different 

variables, to centre the prior on the contemporaneous relations present in the economic 

model, and to impose overidentifying restrictions. In this sense, our prior can be treated as an 

extension of the Sims and Zha (1998) framework. 

The structure of the article is as follows. Section 2 outlines the specification of the proposed 

prior and derives an analytical expression for the posterior and marginal data density (MDD). 

Section 3 presents an empirical illustration of our framework based on the New-Keynesian 

model as described by Orphanides (2003). Section 4 concludes and provides possible avenues 

for future research. Finally, the Appendix shows that our prior is a generalisation of the 

standard Normal-Wishart prior for VAR models. 

 

2. Structural Bayesian VAR model 

 

We consider an SVAR model of the following form: 

 

𝐴𝑦𝑡 = 𝐵(1)𝑦𝑡−1 + 𝐵(2)𝑦𝑡−2 + ⋯ + 𝐵(𝑃)𝑦𝑡−𝑃 + 𝐵(0) + 𝜖𝑡,   (1) 

 

where 𝑦𝑡 is an 𝑁 × 1 vector of observations, 𝐴 and 𝐵(𝑝) for 𝑝 ≥ 1 are 𝑁 × 𝑁 matrices of 

coefficients, 𝐵(0) is the vector of constants and 𝜖𝑡 ∼ 𝒩(0, Ω) is the error term. For covariance 

matrix Ω, we assume that it is diagonal with 𝜔𝑛 elements. To simplify the notation, we rewrite 

(1) as: 

 

𝐴𝑦𝑡 = 𝐵𝑥𝑡 + 𝜖𝑡, (2) 

 

where 𝑥𝑡 = [𝑦𝑡−1′ 𝑦𝑡−2′  … 𝑦𝑡−𝑃′ 1]′ is a 𝐾-dimensional vector and 𝐵 =

[𝐵(1) 𝐵(2)  … 𝐵(𝑃) 𝐵(0)] a matrix of size 𝑁 × 𝐾 with 𝐾 = 𝑃𝑁 + 1. 

The 𝑛-th equation of (2) can be written as: 

 

𝐴𝑛𝑦𝑡 = 𝐵𝑛𝑥𝑡 + 𝜖𝑛𝑡 (3) 

 



with 𝐴𝑛 = [𝑎𝑛1 𝑎𝑛2  … 𝑎𝑛𝑁] and 𝐵𝑛 = [𝑏𝑛1 𝑏𝑛2  … 𝑏𝑛𝐾] representing the 𝑛-th rows of 

matrices 𝐴 and 𝐵, respectively. 

We impose the following restrictions on the 𝐴 matrix: 

1. The elements on the diagonal satisfy 𝑎𝑛𝑛 = 1 (normalisation). 

2. The determinant is |𝐴| = 1. 

3. There are 𝑀𝑛 free parameters of 𝐴𝑛, which are estimated (gathered in row vector 𝐴̃𝑛) and 

𝑁 − (𝑀𝑛 + 1) parameters set to zero. 

Following Waggoner and Zha (2003), we write down these restrictions as: 

 

𝐴𝑛 = [1 𝐴̃𝑛]𝑆𝑛 (4a) 

  

𝐴̃𝑛 = 𝐴𝑛𝑆𝑛
∗  (4b) 

 

where 𝑆𝑛 and 𝑆𝑛
∗  are selection matrices consisting of zeros and ones of size (𝑀𝑛 + 1) × 𝑁 

and 𝑁 × 𝑀𝑛, respectively. 

The assumption that |𝐴| = 1 means that our framework is suitable for a lower or upper 

triangular 𝐴 (or restricted subsets). Given this limitation, we will show that this setup is well-

designed to introduce contemporaneous relations and overidentifying restrictions. 

 

2.1. Prior specification 

 

We propose the prior specification of the following form:2 

 

𝑝(Ω) = ∏ 𝑝

𝑁

𝑛=1

(𝜔𝑛) ≡ ∏ ℐ𝒢

𝑁

𝑛=1

(𝑣1𝑛, 𝑣2𝑛), 
(5a) 

 

𝑝(𝐴|Ω) = ∏ 𝑝

𝑁

𝑛=1

(𝐴̃𝑛|Ω) ≡ ∏ 𝒩

𝑁

𝑛=1

(𝐴𝑛, 𝜔𝑛𝐹𝑛), 
(5b) 

 

                     
2 If 𝑀𝑛=0 and 𝐴̃𝑛 is the empty matrix, we set 𝑝(𝐴̃𝑛|𝛺) to unity. 



𝑝(𝐵|𝐴, Ω) = ∏ 𝑝

𝑁

𝑛=1

(𝐵𝑛|𝐴, Ω) ≡ ∏ 𝒩

𝑁

𝑛=1

(𝐵𝑛, 𝜔𝑛𝐺𝑛), (5c) 

 

where 𝒩 stands for the normal pdf and the inverted gamma ℐ𝒢 pdf is defined as: 

 

ℐ𝒢(𝑣1, 𝑣2) : = 𝑝(𝑥) = 𝑣2
𝑣1[𝛤(𝑣1)]−1𝑥−(𝑣1+1)exp{− 𝑣2 𝑥⁄ },  𝑣1, 𝑣2 > 0. (6) 

 

The underlined parameters are fixed and depend on a set of hyperparameters, the values of 

which are chosen so that for the exactly identified models, our prior corresponded to that of 

the standard Wishart-Normal prior.3 

 

For 𝑝(Ω), we suggest the following setting: 

 

𝑣1𝑛 = 1 2⁄ (𝑣 − (𝑁 − 𝑀𝑛 − 1))

𝑣2𝑛 = 1 2⁄ (𝑣 − 𝑁 − 1)𝜎̂𝑛
2,

 (7) 

 

where {𝜎̂𝑛
2: 𝑛 = 1,2, … , 𝑁} are estimated variances of the residuals from univariate 

autoregressions and 𝑣 is the first hyperparameter. 

In the case of 𝑝(𝐴|Ω), we need to set 𝐴𝑛 and 𝐹𝑛. The choice of the former depends on the 

underlying economic model. For the latter, we suggest: 

 

𝐹𝑛 = 𝑆𝑛
∗′

diag ((
𝜆0

𝜎̂1
)

2

, (
𝜆0

𝜎̂2
)

2

, … , (
𝜆0

𝜎̂𝑁
)

2

) 𝑆𝑛
∗ , (8) 

 

with 𝜆0 being the second hyperparameter. 

Finally, for 𝑝(𝐵|𝐴, 𝛺), we follow closely and set: 

 

𝐵𝑛 = 𝐴𝑛𝐵∗, (9) 

                     
3 In Appendix A, we show that the standard Wishart-Normal prior is a specific case of our prior 
specification. 



 

where 𝐵∗ is an 𝑁 × 𝐾 matrix of the following form: 

 

𝐵∗ = [ 𝐷⏟
𝑁𝑥𝑁

 0⏟
𝑁𝑥𝑁

0⏟
𝑁𝑥𝑁

… 0⏟
𝑁𝑥𝑁

0⏟
𝑁𝑥1

]. (10) 

 

The usual practice is to assume that 𝐷 = diag(1,1, … ,1) so that the prior is concentrated 

on 𝑁 random walk (RW) processes. In the next section, we show that it might be justified to 

select a non-standard form of 𝐵∗ so that the prior is concentrated on the underlying economic 

model. 

As regards 𝜔𝑛𝐺𝑛, we assume it to be a diagonal matrix with elements corresponding to the 

prior variance of the coefficient for variable 𝑦𝑗,𝑡−𝑝: 

 

𝜔𝑛 (
𝜆1

𝜎̂𝑗 × 𝑝𝜆4
)

2

 if 𝑎𝑛𝑗 is a free element in 𝐴𝑛

𝜔𝑛 (
𝜆1𝜆2

𝜎̂𝑗 × 𝑝𝜆4
)

2

 otherwise.

 (11) 

 

Hyperparameter 𝜆1 controls the overall tightness, 𝜆2 ∈ (0,1) differentiates between 

variables with and without a contemporaneous impact on 𝑦𝑛𝑡 and 𝜆4 is the lag decay. Finally, 

the prior variance for the constant term in the 𝑛-th equation is: 

 

𝜔𝑛𝜆3
2, (12) 

 

where for large values of hyperparameter 𝜆3, the prior for the constant term is diffuse. 

 

2.2. Posterior draw 

 

Let 𝑌 = [𝑦1 𝑦2  … 𝑦𝑇]′ and 𝑋 = [𝑥1 𝑥2  …  𝑥𝑇]′ be observation matrices of size 𝑇 × 𝑁 and 

𝑇 × 𝐾, respectively, where 𝑇 is the sample size. The likelihood function is:4 

                     
4 NB. We assume that |A|=1. 



 

𝑝(𝑌 |𝐴, 𝐵, Ω) = (2𝜋)−
𝑁𝑇
2 | Ω|−

𝑇
2𝑒𝑡𝑟{− 1 2⁄ Ω−1(𝐴𝑌′ − 𝐵𝑋′)(𝐴𝑌′ − 𝐵𝑋′)′}, (13) 

 

where 𝑒𝑡𝑟{Λ} = 𝑒𝑥𝑝(𝑡𝑟{Λ}) is the exponent of the matrix trace. 

The algorithm of drawing from the posterior: 

 

𝑝(𝐴, 𝐵, Ω|𝑌) = 𝑝(Ω|𝐴, 𝐵, 𝑌)𝑝(𝐵|𝐴, 𝑌)𝑝(𝐴|𝑌) (14) 

 

consists of three steps: 

i. draw 𝐴 from 𝑝(𝐴|𝑌); 

ii. draw 𝐵 from 𝑝(𝐵|𝐴, 𝑌); 

iii. draw Ω from 𝑝(Ω|𝐴, 𝐵, 𝑌). 

An appealing feature of our prior setup is that distributions 𝑝(Ω|𝐴, 𝐵, 𝑌), 𝑝(𝐵|𝐴, 𝑌) and 

𝑝(𝐴|𝑌) have an analytical form and there is no need to resort to MCMC techniques. In what 

follows, we derive the exact formulas. 

 

Posterior 𝒑(𝛀|𝑨, 𝑩, 𝒀) 

The Bayes formula implies that: 

 

𝑝(Ω|𝐴, 𝐵, 𝑌) ∝ 𝑝(𝑌|𝐴, 𝐵, Ω)𝑝(𝐵|𝐴, Ω)𝑝(𝐴|Ω)𝑝(Ω). (15) 

 

By substituting (5) and (13) to (15), given the diagonal form of Ω, it can be derived that: 

 

𝜔𝑛|𝐴, 𝐵, 𝑌 ∼ ℐ𝒢(𝑣1𝑛, 𝑣2𝑛) (16) 

 

with:5 

 

                     
5 To simplify the notation, if 𝑀𝑛 = 0, the term (𝐴̃𝑛 − 𝐴𝑛)𝐹𝑛

−1(𝐴̃𝑛 − 𝐴𝑛)′ drops out in all formulas of this 

section. 



𝑣1𝑛 = 𝑣1𝑛 + 𝑇 + 𝐾 + 𝑀𝑛 2⁄

𝑣2𝑛 = 𝑣2𝑛 +
(𝐴𝑛𝑌′ − 𝐵𝑛𝑋′)(𝐴𝑛𝑌′ − 𝐵𝑛𝑋′)′ + (𝐵𝑛 − 𝐵𝑛)𝐺𝑛

−1(𝐵𝑛 − 𝐵𝑛)′ + (𝐴̃𝑛 − 𝐴𝑛)𝐹𝑛
−1(𝐴̃𝑛 − 𝐴𝑛)′

2
 .
 (17) 

 

The diagonal form of Ω also means that: 

 

𝑝(Ω|𝐴, 𝐵, 𝑌) = ∏ 𝑝

𝑁

𝑛=1

(𝜔𝑛|𝐴, 𝐵, 𝑌). (18) 

 

Posterior 𝒑(𝑩|𝑨, 𝒀) 

We start the computation of 𝑝(𝐵|𝐴, 𝑌) by noticing that: 

 

𝑝(𝐴𝑛, 𝐵𝑛|𝑌) ∝ ((𝐵𝑛 − 𝐵𝑛)𝐺𝑛

−1
(𝐵𝑛 − 𝐵𝑛)′ + 𝜍𝑛)

−𝑣1𝑛

, (19) 

 

with: 

 

𝐵𝑛 = (𝐵𝑛𝐺𝑛
−1 + 𝐴𝑛𝑌′𝑋)𝐺𝑛

𝐺𝑛 = (𝑋′𝑋 + 𝐺𝑛
−1)

−1

𝜍𝑛 = 𝐴𝑛𝑌′𝑌𝐴𝑛
′ + (𝐴̃𝑛 − 𝐴𝑛)𝐹𝑛

−1(𝐴̃𝑛 − 𝐴𝑛)
′

+ 𝐵𝑛𝐺𝑛
−1𝐵𝑛

′ − 𝐵𝑛𝐺𝑛

−1
𝐵′𝑛 + 2𝑣2𝑛.

 (20) 

 

The result above follows from two observations. First, it is possible to calculate the joint 

distribution: 

 

𝑝(𝐴, 𝐵|𝑌) =
𝑝(𝐴, 𝐵, Ω|𝑌)

𝑝(Ω|𝐴, 𝐵, 𝑌)
. (21) 

 

The denominator is given by (16)-(18), whereas the nominator can be computed with (5) 

and (13) as 𝑝(𝐴, 𝐵, Ω|𝑌) ∝ 𝑝(𝑌|𝐴, 𝐵, Ω)𝑝(𝐵|𝐴, Ω)𝑝(𝐴|Ω)𝑝(Ω). The second observation is 

that, given the structure of model (1), it is possible to decompose 𝑝(𝐴, 𝐵|𝑌) into: 

 



𝑝(𝐴, 𝐵|𝑌) = ∏ 𝑝

𝑁

𝑛=1

(𝐴𝑛, 𝐵𝑛|𝑌). (22) 

 

With (19) and (20), it can be shown that: 

 

𝐵𝑛|𝐴𝑛, 𝑌 ∼ 𝑡𝐾(𝐵𝑛, 𝐺𝑛, 𝜍𝑛, 𝑔𝑛), (23) 

 

where 𝑔𝑛 = 𝑇 + 𝑀𝑛 + 2𝑣1𝑛. Here, 𝑡𝐾(𝜇, 𝛴, 𝜃, 𝛾) denotes 𝐾-dimensional 𝑡-Student pdf with 

𝛾 degrees of freedom: 

 

𝑡𝐾(𝜇, 𝛴, 𝜃, 𝛾) : = 𝑝(𝑥) = (𝛾𝜋)−
𝐾
2 |Σ|−

1
2

𝛤((𝛾 + 𝐾)/2)

𝛤(𝛾/2)
𝜃

𝛾+𝐾
2 {𝜃 (𝑥 − 𝜇)Σ−1(𝑥 − 𝜇)′}−

𝛾+𝐾
2 . (24) 

 

Finally, by analogy to (21), the conditional distribution 𝑝(𝐵|𝐴, 𝑌) is: 

 

𝑝(𝐵|𝐴, 𝑌) = ∏ 𝑝

𝑁

𝑛=1

(𝐵𝑛|𝐴𝑛, 𝑌). (25) 

 

Posterior 𝒑(𝑨|𝒀) 

Let us define: 

 

𝑅𝑛 = [
𝑅𝑛,11 𝑅𝑛,12

𝑅𝑛,21 𝑅𝑛,22
] = 𝑆𝑛[𝑌′𝑌 + 𝐵∗𝐺𝑛

−1𝐵∗
′ − (𝐵∗𝐺𝑛

−1 + 𝑌′𝑋)𝐺𝑛(𝐵∗𝐺𝑛
−1 + 𝑌′𝑋)′]𝑆𝑛

′ , (26) 

 

where 𝑅𝑛,11 is a scalar and 𝑅𝑛,22 an 𝑀𝑛 × 𝑀𝑛 matrix, so that: 

 

[1 𝐴̃𝑛]𝑅𝑛[1 𝐴̃𝑛]′ = 𝐴𝑛𝑌′𝑌𝐴𝑛
′ + 𝐵𝑛𝐺𝑛

−1𝐵𝑛
′ − 𝐵𝑛𝐺𝑛

−1
𝐵𝑛

′
. (27) 

 

Distribution 𝑝(𝐴̃𝑛|𝑌) can be computed by integrating out 𝐵𝑛 from 𝑝(𝐴𝑛, 𝐵𝑛|𝑌), which is 

given by (19). The result is a multivariate 𝑡-Student: 



 

𝐴̃𝑛|𝑌 ∼ 𝑡𝑀𝑛
(𝐴𝑛, 𝐹𝑛, 𝜒𝑛, 𝑓𝑛), (28) 

 

where: 

 

𝐴𝑛 = (𝐹𝑛
−1𝐴𝑛

′ − 𝑅𝑛,21)
′
𝐹𝑛,

𝐹𝑛 = (𝑅𝑛,22 + 𝐹𝑛
−1)

−1
,

𝜒𝑛 = 𝑅𝑛,11 + 𝐴𝑛𝐹𝑛
−1𝐴𝑛

′ − 𝐴𝑛𝐹𝑛

−1
𝐴𝑛

′
+ 2𝑣2𝑛,

𝑓𝑛 = 𝑇 + 2𝑣1𝑛.

 (29) 

 

Finally, posterior 𝑝(𝐴|𝑌) is:6 

 

𝑝(𝐴|𝑌) = ∏ 𝑝

𝑁

𝑛=1

(𝐴̃𝑛|𝑌). (30) 

 

2.3. Marginal data density 

 

Another advantageous feature of our prior setup is that there is an analytical form of the 

marginal data density. To derive it, we need to calculate the following integral: 

 

𝑝(𝑌) = ∫ 𝑝(𝑌|𝐴, 𝐵, Ω)𝑝(𝐵|𝐴, Ω)𝑝(𝐴|𝛺)𝑝(Ω)𝑑𝐴𝑑𝐵𝑑Ω. (31) 

 

We start by evaluating 𝑝(𝑌|𝐴, Ω) = ∫ 𝑝(𝑌|𝐴, 𝐵, Ω)𝑝(𝐵|𝐴, Ω)𝑑𝐵. The combination of (5c) 

and (13) leads to: 

 

𝑝(𝑌|𝐴, 𝐵, Ω) 𝑝(𝐵|𝐴, Ω) = (2𝜋)−𝑁𝑇 2⁄ |𝛺|−𝑇 2⁄ 𝑒𝑡𝑟{− 1 2⁄ Ω−1(𝐴𝑌′ − 𝐵𝑋′)(𝐴𝑌′ − 𝐵𝑋′)′} ×

× (2𝜋)−
𝑁𝐾

2 ∏|𝐺𝑛|
−0.5

𝑁

𝑛=1

𝜔𝑛
−𝐾 2⁄

exp{− 1 2⁄ 𝜔𝑛
−1(𝐵𝑛 − 𝐵𝑛)𝐺𝑛

−1(𝐵𝑛 − 𝐵𝑛)′}.
 (32) 

                     
6 For 𝑀𝑛 = 0, we set 𝑝(𝐴̃𝑛|𝑌) to unity. 



 

Integrating out 𝐵 yields: 

 

𝑝(𝑌|𝐴, 𝛺) = 𝜅1 ∏ 𝜔𝑛
−𝑇/2

𝑁

𝑛=1

exp{−
1

2
𝜔𝑛

−1 (𝐴𝑛𝑌′𝑌𝐴𝑛
′ + 𝐵𝑛𝐺𝑛

−1𝐵𝑛
′ − 𝐵𝑛𝐺𝑛

−1
𝐵𝑛′)}, (33) 

 

where 𝜅1 = (2𝜋)−𝑁𝑇/2 ∏ (|𝐺𝑛|/|𝐺𝑛|)
0.5

𝑁
𝑛=1 . 

Next, we calculate 𝑝(𝐴, 𝑌) = ∫ 𝑝(𝐴, Ω, 𝑌)𝑑𝛺 = ∫ 𝑝(𝑌|𝐴, Ω)𝑝(𝐴|Ω)𝑝(Ω)𝑑Ω. By 

combining (5a), (5b) and (33), we obtain: 

 

𝑝(𝐴, Ω, 𝑌) = 𝜅1 ∏ 𝜔𝑛
−𝑇 2⁄

𝑁

𝑛=1

exp{−
1

2
𝜔𝑛

−1 (𝐴𝑛𝑌′𝑌𝐴𝑛′ + 𝐵𝑛𝐺𝑛
−1𝐵𝑛

′ − 𝐵𝑛𝐺𝑛

−1
𝐵𝑛′)} ×

× ∏(2𝜋)−
𝑀𝑛
2

𝑁

𝑛=1

|𝐹𝑛|
−0.5

𝜔𝑛

−
𝑀𝑛
2 exp{− (𝐴̃𝑛 − 𝐴𝑛)𝐹𝑛

−1(𝐴̃𝑛 − 𝐴𝑛)′ 2𝜔𝑛⁄ } ×

× ∏[𝛤(𝑣1𝑛)]
−1

𝑁

𝑛=1

(𝑣2𝑛)
𝑣1𝑛𝜔𝑛

−(𝑣1𝑛+1)
exp{− 𝑣2𝑛 𝜔𝑛⁄ }.

 

 

(34) 

 

Integrating out Ω from (34) yields: 

 

𝑝(𝐴, 𝑌) = 𝜅1𝜅2 ∏ 𝛤

𝑁

𝑛=1

(
𝑔𝑛

2
) (𝜍𝑛)−

𝑔𝑛
2 =

= 𝜅1𝜅2 ∏ 𝛤

𝑁

𝑛=1

(
𝑔𝑛

2
) ((𝐴̃𝑛 − 𝐴𝑛)𝐹𝑛

−1
(𝐴̃𝑛 − 𝐴𝑛)′ + 𝜒𝑛)

−
𝑔𝑛
2

, 

(35) 

 

where 𝜅2 = 2𝑁𝑇/2 ∏ 𝜋−𝑀𝑛/2𝑁
𝑛=1 |𝐹𝑛|

−0.5
𝛤(𝑣1𝑛)

−1
(2𝑣2𝑛)

𝑣1𝑛
. 

 

In the last step, we compute integral 𝑝(𝑌) = ∫ 𝑝(𝐴, 𝑌)𝑑𝐴. Let us notice that 

 



∫ 𝛤 (
𝑔

𝑛

2
) ((𝐴̃𝑛 − 𝐴𝑛)𝐹𝑛

−1
(𝐴̃𝑛 − 𝐴𝑛)′ + 𝜒𝑛)

−𝑔𝑛 2⁄

𝑑𝐴̃𝑛 = 𝜋
𝑀𝑛
2 𝛤(𝑓𝑛 2⁄ )|𝐹𝑛|

0.5
|𝜒𝑛|−

𝑓𝑛
2 . (36) 

 

As a result, the marginal data density is: 

 

𝑝(𝑌) = 𝜅1𝜅2 ∏ 𝜋
𝑀𝑛
2

𝑁

𝑛=1

𝛤(𝑓𝑛 2⁄ )|𝐹𝑛|
0.5

|𝜒𝑛|−
𝑓𝑛
2 =

= 𝜋−𝑁𝑇 2⁄ ∏ (
|𝐹𝑛||𝐺𝑛|

|𝐹𝑛||𝐺𝑛|
)

0.5𝑁

𝑛=1

×
𝛤 (

𝑇
2 + 𝑣1𝑛)

𝛤(𝑣1𝑛)
× (2𝑣2𝑛)

𝑣1𝑛
𝜒𝑛

−(𝑣1𝑛+
𝑇
2

)
.

 (37) 

 

2.4. Advantages of our prior setup 

 

We consider the prior specification above as advantageous for the following reasons: 

a) It provides an intuitive framework for setting priors on the contemporaneous relationship 

between variables on the basis of the economic theory; 

b) It generalises the commonly used Normal-Wishart prior for VARs (Appendix A); 

c) It enables overidentifying restrictions in recursive identification schemes and the sampling 

from the posterior distribution is exact; 

d) There is an analytical expression for the marginal data density which facilitates model 

comparisons and the choice of hyperparameters; 

e) One may differentiate between the lag of the same or different variables, as advocated e.g. 

by Litterman (1986). 

The next section illustrates all the advantages through the application of the 

methodological framework to calculate impulse responses from a structural VAR model with 

priors taken from a backward-looking New Keynesian model. 

 

3. Empirical application 

 



We consider a small New Keynesian model that consists of three equations expressed in 

terms of output gap 𝑧𝑡, inflation 𝜋𝑡 and nominal interest rate 𝑅𝑡 (see Orphanides, 2003, for a 

more detailed description): 

 

𝑧𝑡 = 𝜌𝑧𝑧𝑡−1 − 𝜉(𝑅𝑡−1 − 𝜋𝑡−1) + 𝜖𝑡
𝐷 , 

(38a) 

 

𝜋𝑡 = 𝜌𝜋𝜋𝑡−1 + 𝜅𝑧𝑡 + 𝜖𝑡
𝑀𝑈, 

 
(38b) 

𝑅𝑡 = 𝜌𝑅𝑅𝑡−1 + 𝛾𝜋𝑡 + 𝜖𝑡
𝑀𝑃, (38c) 

 

where 𝜖𝑡
𝐷, 𝜖𝑡

𝑀𝑈 and 𝜖𝑡
𝑀𝑃 stand for the demand, mark-up and monetary shock, respectively. 

For convenience, the three equations could be labelled as an IS curve, a Phillips Curve and a 

simplified Taylor rule, respectively. We illustrate the dynamics of this model by calculating 

the impulse response function (IRF) from the SVAR model of the form shown in (1) with the 

prior given by model (38). 

From Eurostat, we collect quarterly data describing the Polish economy over the period of 

2004:1-2024:4. For 𝑧𝑡, 𝜋𝑡 and 𝑅𝑡, we use the following series: the 3-month WIBOR 

(quarterly average), GDP deflator (seasonally adjusted, quarter on quarter at an annualised 

rate) and GDP (SCA, constant prices). The output gap is calculated as a cyclical part with the 

Hodrick-Prescott filter (with 𝜆 = 1,600). 

Let 𝑦𝑡 = [𝑅𝑡  𝜋𝑡 𝑧𝑡]′ so that we could write down (38) in the form of SVAR (1) with the 

prior centred on: 

 

𝐸(𝐴) = [
1 −𝛾 0
0 1 −𝜅
0 0 1

]   and  𝐸(𝐵) = [

𝜌𝑅 0 0 0
0 𝜌𝜋 0 0

−𝜉 𝜉 𝜌𝑧 0
]. (39) 

 

Apart from 𝛾 and 𝜅, we fix the remaining parameters of the 𝐴 matrix at zero, which means 

that we impose one overidentifying restriction. As discussed in the methodological part of 

the paper, our setup makes it straightforward to elicit non-zero prior beliefs for 

contemporaneous relations. To achieve this, we set 𝜅 = 0.1 in the Phillips curve and 𝛾 =

0.15 in the Taylor rule. For the remaining parameters, we set 𝜉 = 0.1, 𝜌𝑧 = 0.9, 𝜌𝜋 = 0.9 



and 𝜌𝑅 = 0.9. The values above are broadly in line with the literature on New Keynesian (e.g 

Orphanides, 2003). 

For the hyperparameters, we choose values close to those suggested by Sims and Zha 

(1998) and set 𝜆0 = 1, 𝜆3 = 1000, 𝜆4 = 1, 𝑣 = 𝑁 + 2, whereas for hyperparameter 𝜆2 that 

is not present in the normal-Wishart setup, we set 𝜆2 = 0.5. We do not fix the overall 

tightness hyperparameter at a specified value, but assume a hierarchical prior structure, as 

advocated e.g. by Giannone et al. (2015). In particular, we assume 𝜆1 ∼ ℐ𝒢(2,0.1) so that 

𝐸(𝜆1) = 0.1. 

Let us notice that, depending on the hyperparameters, the marginal data density is available 

in a closed form (see 37). Treating 𝜆1 as an unknown parameter, (37) can be written as 

𝑝(𝑌|𝜆1). The marginal posterior of 𝜆1 is: 

 

𝑝(𝜆1|𝑌) ∝ 𝑝(𝜆1)𝑝(𝑌|𝜆1). (40) 

 

As a result, the Random Walk Metropolis-Hastings (MH) algorithm, which involves 

drawing from posterior of 𝜆1 and calculating impulse responses, is as follows: 

i. Set 𝑗 = −𝐽0 and initialise 𝜆1
(𝑗−1)

= 0.1; 

ii. Draw candidate 𝜆1
∗ = 𝜆1

(𝑗−1)
+ 𝛿𝜖, where 𝛿 is a calibrating factor and 𝜖 ∼ 𝒩(0,1); 

iii. Calculate 𝜃 = min{1,
𝑝(𝜆1

∗ )𝑝(𝑌|𝜆1
∗ )

𝑝(𝜆1
(𝑗−1)

)𝑝(𝑌|𝜆1
(𝑗−1)

)
} and draw 𝑢 from 𝒰(0,1), where 𝒰 denotes the 

uniform distribution on (0,1); 

iv. If 𝜃 < 𝑢, set 𝜆1
(𝑗)

= 𝜆1
(𝑗−1)

, otherwise set 𝜆1
(𝑗)

= 𝜆1
∗ ; 

v. If 𝑗 > 0, draw 𝐴, 𝐵 and Ω from 𝑝 (𝐴, 𝐵, 𝛺|𝑌, 𝜆1
(𝑗)

) and compute the value of IRF; 

vi. If j<J, go to (ii). Otherwise stop. 

The values of 𝐽0 = 1,000 and 𝐽 = 100,000 describe the size of the burn-in sample and the 

number of MH draws. As a result, after running the algorithm, we obtain 𝐽 = 100,000 

realisations of IRF from the posterior. 

  



Figure 1. Prior and posterior density of an overall tightness hyperparameter 

 
Notes. The solid and dotted lines stand for prior and posterior density, respectively. 
Source: authors’ calculations. 

 

Figure 1 presents the prior and posterior density of 𝜆1, showing that the mean of the latter 

(0.48) is much higher compared to the former (0.1). This means that MDD is higher when 𝜆1 

ranges between 0.3 and 0.6, rather than if one takes the standard value of 0.1. Figure 2 outlines 

the median value of impulse responses for the three shocks of the model. A standardised 

monetary policy shock is characterised by a temporary but rather persistent increase of the 

nominal interest rate by about 55 basis points. The negative impact of the monetary shock on 

inflation and output (relative to the trend) reaches the peak about 1.5 years after the shock, 

with annualised inflation falling by 0.1 percentage point and output by 0.15%. The mark-up 

shock exerts an immediate impact on inflation of about 5 percentage points and a 

contemporaneous response of monetary policy, evidenced by the rise in the nominal interest 

rate by almost 2 percentage points. The impact on the output gap is lagged and negative, 

amounting to about 0.25% after one year from the occurrence of the shock. Finally, a positive 

demand shock raises output by 1.5% relative to the trend with an impact on inflation of about 

1 percentage point in the next quarter. The overall impact on both variables eventually dies 

out, as the rise in the nominal interest rate has an offsetting impact. The properties of the 



estimated model are therefore very intuitive, stemming from (i) the model structure (ii), the 

VAR dynamics and also (iii) the priors of the modeler about the coefficients in the structural 

equations. 

 

Figure 2. Impulse response functions 

 
Notes. Median of posterior draws. 
Source: authors’ calculations. 

 

 

  



4. Conclusions 

 

In this paper, we have proposed a Structural Bayesian recursive VAR framework that has 

several novel features compared to the existing methods. The prior setup that we have 

designed is advantageous from the econometric perspective as the MDD has an analytical 

form and there is no need to resort to MCMC techniques. Our prior setup is also appealing 

from an economic perspective: it is effective in eliciting priors on the contemporaneous 

relationship between variables, thus facilitating a meaningful definition of prior beliefs 

consistent with the economic theory. This paper opens a number of new avenues for further 

research. The ability of drawing from exact distributions could be exploited through a variety 

of applications, for example for setting up a large SVAR model or in the context of 

applications with different hierarchical priors. Additionally, the current framework appears 

particularly useful in applications where the researcher has prior beliefs on the 

contemporaneous coefficients of a given model. Finally, from a theoretical perspective, this 

methodological framework can be extended to alternative identification schemes and 

forward-looking models. 

 

References 

 

Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector autoregressions. Journal of Applied 

Econometrics, 25(1), 71–92. https://doi.org/10.1002/jae.1137. 

Baumeister, C., & Hamilton, J. D. (2015). Sign restrictions, structural vector autoregressions, and useful prior 

information. Econometrica, 83(5), 1963–1999. https://doi.org/10.3982/ECTA12356. 

Baumeister, C., & Hamilton, J. D. (2019). Structural Interpretation of Vector Autoregressions with Incomplete 

Identification: Revisiting the Role of Oil Supply and Demand Shocks. American Economic Review, 109(5), 

1873–1910. https://doi.org/10.1257/aer.20151569. 

Christiano, L. J., Eichenbaum, M., & Evans, C. L. (1999). Monetary policy shocks: What have we learned and 

to what end? In J. B. Taylor, M. Woodford (Eds.), Handbook of Macroeconomics (vol. 1 part A, pp. 65–

148). https://doi.org/10.1016/S1574-0048(99)01005-8. 

Christiano, L. J., Eichenbaum, M., & Evans, C. L. (2005). Nominal Rigidities and the Dynamic Effects of a 

Shock to Monetary Policy. Journal of Political Economy, 113(1), 1–45. https://doi.org/10.1086/426038. 

https://doi.org/10.1002/jae.1137
https://doi.org/10.3982/ECTA12356
https://doi.org/10.1257/aer.20151569
https://doi.org/10.1016/S1574-0048(99)01005-8
https://doi.org/10.1086/426038


Crump, R. K., Eusepi, S., Giannone, D., Qian, E., & Sbordone, A. M. (2025). A Large Bayesian VAR of the 

U.S. Economy. International Journal of Central Banking, 21(2), 351–409. 

https://www.ijcb.org/journal/ijcb25q2a8.pdf. 

Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. The Review of 

Economics and Statistics, 97(2), 436–451. https://doi.org/10.1162/REST_a_00483. 

Kadiyala, K. R., & Karlsson, S. (1997). Numerical methods for estimation and inference in Bayesian VAR-

models. Journal of Applied Econometrics, 12(2), 99–132. https://doi.org/10.1002/(SICI)1099-

1255(199703)12:2%3C99::AID-JAE429%3E3.0.CO;2-A. 

Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions: five years of experience. Journal of 

Business & Economic Statistics, 4(1), 25–38. https://doi.org/10.2307/1391384. 

Orphanides, A. (2003). Monetary policy evaluation with noisy information. Journal of Monetary Economics, 

50(3), 605–631. https://doi.org/10.1016/S0304-3932(03)00027-8. 

Rubaszek, M., Szafranek, K., & Uddin, G. S. (2021). The dynamics and elasticities on the U.S. natural gas 

market. A Bayesian Structural VAR analysis. Energy Economics, 103. 

https://doi.org/10.1016/j.eneco.2021.105526. 

Sims, C. A. (2003). Comments on Smets and Wouters. 

https://archive.riksbank.se/Upload/Dokument_riksbank/Kat_foa/smets.pdf. 

Sims, C. A, & Zha, T. (1998). Bayesian methods for dynamic multivariate models. International Economic 

Review, 39(4), 949–968. https://doi.org/10.2307/2527347. 

Uhlig, H. (2005). What are the effects of monetary policy on output? Results from an agnostic identification 

procedure. Journal of Monetary Economics, 52(2), 381–419. https://doi.org/10.1016/j.jmoneco.2004.05.007. 

Waggoner, D. F., & Zha, T. (2003). A Gibbs sampler for structural vector autoregressions. Journal of Economic 

Dynamics and Control, 28(2), 349–366. https://doi.org/10.1016/S0165-1889(02)00168-9. 

 

  

https://www.ijcb.org/journal/ijcb25q2a8.pdf
https://doi.org/10.1162/REST_a_00483
https://doi.org/10.1002/(SICI)1099-1255(199703)12:2%3C99::AID-JAE429%3E3.0.CO;2-A
https://doi.org/10.1002/(SICI)1099-1255(199703)12:2%3C99::AID-JAE429%3E3.0.CO;2-A
https://doi.org/10.2307/1391384
https://doi.org/10.1016/S0304-3932(03)00027-8
https://doi.org/10.1016/j.eneco.2021.105526
https://archive.riksbank.se/Upload/Dokument_riksbank/Kat_foa/smets.pdf
https://doi.org/10.2307/2527347
https://doi.org/10.1016/j.jmoneco.2004.05.007
https://doi.org/10.1016/S0165-1889(02)00168-9


Appendix 

 

Prior comparison with WZ 

 

In this appendix, we show that the commonly used Normal-Wishart prior for VAR models 

(Kadiyala & Karlsson, 1997) is a specific case of our prior defined in (5). Let Σ denote the 

error term covariance matrix of the reduced form representation corresponding to the 

structural model given by (1): 

 

Σ = 𝐴−1Ω𝐴′−1. (A1) 

 

The prior for 𝛴 is of the inverted Wishart (ℐ𝒲) form: 

 

𝑝(Σ) ∝ |Σ|−
1
2

(𝑣+𝑁+1)
etr{−0.5Σ−1𝑄}. (A2) 

 

It is common practice to set: 

 

𝑄 = (𝑣 − 𝑁 − 1) × diag ((
𝜎̂1

𝜆0
)

2

, (
𝜎̂2

𝜆0
)

2

, … , (
𝜎̂𝑁

𝜆0
)

2

), (A3) 

 

so that: 

 

𝐸(Σ) = diag ((
𝜎̂1

𝜆0
)

2

, (
𝜎̂2

𝜆0
)

2

, … , (
𝜎̂𝑁

𝜆0
)

2

). (A4) 

 

Below, we elicit the values of 𝑣1𝑛, 𝑣2𝑛, 𝐴𝑛 and 𝐹𝑛 for our prior setup that are consistent 

with the ℐ𝒲 prior and 𝑄 given by (A2) and (A3). 

We consider a case in which 𝐴 is unit upper triangular so that the correspondence between 

𝛴 and {𝐴, Ω} is one-to-one. To derive the joint prior for {𝐴, Ω}, we substitute the Jacobian: 

 



𝒥(Σ → 𝐴, Ω) = ∏(𝜔𝑛)𝑛−1

𝑁

𝑛=1

 (A5) 

 

into (A2), which yields: 

 

𝑝(𝐴, 𝛺) = ∏ 𝜔𝑛

−
1
2

(𝑣+𝑁−2𝑛+3)
𝑁

𝑛=1

× exp{−0.5𝜔𝑛
−1𝐴𝑛𝑄𝐴𝑛′} (A6) 

 

and the conditional prior for 𝐴 

 

𝑝(𝐴|𝛺) ∝ ∏ exp

𝑁

𝑛=1

{−0.5𝜔𝑛
−1𝐴𝑛𝑄𝐴𝑛′}. (A7) 

 

Let us define: 

 

𝑄𝑛 = 𝑆𝑛𝑄𝑆𝑛
′ , (A8) 

 

where selection matrices 𝑆𝑛 introduced in (5) for the upper-triangular 𝐴 are: 

 

𝑆𝑛  =  [ 0(𝑁−𝑛+1)×(𝑛−1) 𝐼𝑁−𝑛+1]. (A9) 

 

Given the form of 𝑄 in (A3), we can partition 𝑄𝑛 into: 

 

𝑄𝑛 = [
𝑞𝑛𝑛

∗ 0

0 𝑄𝑛
∗ ], (A10) 

 

where 𝑞𝑛𝑛 = (𝑣 − 𝑁 − 1)𝜆0
−2𝜎̂𝑛

2 and 𝑄𝑛
∗ = (𝑣 − 𝑁 − 1)𝜆0

−2diag(𝜎̂𝑛+1
2 , … , 𝜎̂𝑁

2).7 

Consequently, (A7) can be written as: 

                     
7 Notice that 𝑄𝑁

∗  reduces to the empty matrix. 



 

𝑝(𝐴|Ω) ∝ ∏ exp

𝑁−1

𝑛=1

{−0.5𝜔𝑛
−1𝐴̃𝑛𝑄𝑛

∗ 𝐴̃′𝑛} = ∏ 𝒩

𝑁−1

𝑛=1

(0, 𝜔𝑛𝑄𝑛
∗ −1). (A11) 

 

It is now evident that the conditional prior given by (A11) is a specific form of the prior 

defined in (5b), i.e. if we set 𝐴𝑛 = 0 and 𝐹𝑛 = 𝑄𝑛
∗ −1

. Let us notice that this choice of the prior 

corresponds to the value of 𝐹𝑛 proposed in (8). 

Finally, we derive the marginal prior for Ω induced by the ℐ𝒲 prior (A2). Since 𝑝(Ω) =

∫ 𝑝(𝐴, Ω)𝑑𝐴, the use of (A6) yields: 

 

𝑝(𝛺) = ∏ ℐ𝒢

𝑁

𝑛=1

(
1

2
(𝑣 − 𝑛 + 1),

1

2
𝑞𝑛𝑛), (A12) 

 

where the ℐ𝒢() pdf is defined in (6). It is now evident that we need to set 𝑣1𝑛 =

0.5 (𝑣 − (𝑛 − 1)) and 𝑣2𝑛 = 0.5𝑞𝑛𝑛 in the prior defined in (5a) so that it is consistent with 

the ℐ𝒲 prior. Let us notice that for upper triangular 𝐴, when (𝑁 − 𝑀𝑛 − 1) = (𝑛 − 1), these 

are the values of 𝑣1𝑛 and 𝑣1𝑛 proposed in (7). 


